

405

 30 The Earley Parser: Dynamic
Programming in Java

Chapter

Objectives
Sentence parsing using dynamic programming
 Memoization of subparses
 Retaining partial solutions (parses) for reuse
The chart as medium for storage and reuse
 Indexes for word list (sentence)
 States reflect components of parse
 Dot reflects extent of parsing right hand side of grammar rule
Lists of states make up components of chart
 Chart linked to word list
Java Implementation of an Earley parser
 Context free parser
 Deterministic
Chart supports multiple parse trees
Forward development of chart composes components of successful parse
Backward search of chart produces possible parses of the sentence

Chapter
Contents

30.1 Chart Parsing: An Introduction
30.2 The Earley Parser: Components
30.3 The Earley Parser: Java Code
30.4 The Completed Parser
30.5 Generating Parse Trees from Charts and Grammar Rules (Advanced Section)

 30.1 Chart Parsing: An Introduction

 The Earley parser (Earley 1970) uses dynamic programming to analyze
strings of words. Traditional dynamic programming techniques (Luger
2009, Section 4.1) use an array to save (memoize) the partial solutions of a
problem for use in the generation of subsequent partial solutions. In Earley
parsing this array is called a chart, and thus this approach to parsing
sentences is often called chart parsing.

In Chapter 9, Sections 1 and 2, we first presented the full algorithms along
with the evolving chart for Earley parsing. In these sections, we presented
pseudo-code, demonstrated the “dot” as a pointer indicating the current
state of the parse for each grammar rule, and explicitly considered the state
of the chart after each step of the algorithm. We refer to Sections 9.1, 9.2,
and Luger (2009, Section 15.2.2) for these specific details if there is any
concern about how the chart-parsing algorithm works. We feel that it is
also interesting to compare the data representation and control structures
used in the declarative Prolog environment, Chapter 9, with what we next
present with the object-oriented representations of Java.

406 Part IV: Programming in Java

30.2 The Earley Parser: Components

 We first discuss the data representations required by the Earley parsing
algorithm presented in Sections 9.1 and 9.2. Of course, in the present
chapter we will be using an object-oriented hierarchy to capture the
components of the parser. Consider what the pseudo-code requires:

• A sentence. The sentence needs to be in a format that
supports pointers to any word located in that sentence so that
appropriate grammar rules can be applied.

• A grammar. The Earley parser needs a set of (context free)
grammar rules that can be applied to interpret the components
of the sentence. The parser itself has no knowledge of the parts
of speech (POS) or production rules of the grammar.

• An evolving chart. The chart is used to save partial solutions
(accepted parts of the parse) for later use. Thus, the chart is
used to contain the states as they are produced during the
algorithm. These states need to be stored in the order of their
production and without repeats.

• The states. State will capture the current activity of the parser.
Thus it will need to be a container for the current rule, which
has a left-hand-side, LHS, and a right-hand-side, RHS. Besides
instantiating a particular rule, state must also have the current
(i, j) pair that presents the seen/unseen parts of the
sentence for that rule.

We next consider how each of these constituents of the algorithm is
represented as data structures in Java. In Section 30.3 we describe the
Earley parser itself that will utilize these components.

The Sentence First, we consider the set of descriptors that the sentence needs. The
primary thing we require is the ability to index into specific word locations
in the current sentence. This can be handled two ways: the use of a simple
representation, or the use of a class. The simple representation would be a
String array. This array would enable us easily to index to specific words
in the sentence. Everything that we need for the algorithm is present.

We could also use a class to represent each indexed sentence. If
Sentence is a class, we could incorporate other aspects of the sentence
into that class, such as the segmentation of a String into individual
words. If we were using the Earley algorithm in conjunction with another
algorithm (which is often required), we may need to create the Sentence
class so that we can separate the sentence’s parsing from other code.

For this presentation, we use the simple representation of a sentence as a
String array.

The Grammar For the grammar rule processing required by the Earley parser we create a
class. The application of each rule needs to know the specific rules of a
grammar, and which non-terminals are parts of speech. So that both
characteristics are easily contained, a Grammar class is a good choice. The
Grammar class will need two important methods: getRHS(String
lhs), and isPOS(String lhs):

 Chapter 30 The Earley Parser: Dynamic Programming in Java 407

getRHS(String lhs) will return all RHS’s of the grammar rules for
any left-hand-side, lhs. If there are not any such rules, then it will indicate
such.

isPOS(String lhs) will return true or false based on whether
or not a component of the lhs is a part of speech.

To make the Grammar class easier to extend to more complicated
grammars, the Grammar class itself does not instantiate any rules. It is a
basic framework for the two important methods, and defines how the rules
are contained and related. To create a specific grammar, the Grammar
class needs to be extended to a new class. This new class will instantiate all
the grammar rules. As just noted, the framework of the grammar rules is a
mapping between a LHS and RHS. For each rule there will be only one
LHS for each RHS, but it is likely in the full set of grammar rules that a
particular LHS will have several possible RHSs. Later in the chapter, the
exact framework for this matching is presented.

The Chart A chart is an ordered list of the successively produced components of the
parse. A major requirement is to determine whether any newly produced
possible component of the parse is already contained in the chart.

To make it easier to maintain the charts correctly and consistently, we
create a Chart class. We could have used a simpler structure, like
Vector, to contain the states of the parse as they are produced, but the
code to manipulate the Vector would then be distributed throughout the
parser code. This dispersed code makes it much harder to make
corrections, and to debug. When we create the Chart class, the code to
manipulate the chart will be identical for all uses, and since the code is all in
one place, it will be much easier to debug. Notice that the Chart class
represents a single chart, not the evolving set of states that are created by
the Earley algorithm. Since there is no additional functionality needed
beside that already discussed, we make a Chart array for the evolving set
of chart states, rather than making another class.

The States A state component for the parser has one left-hand-side, LHS, one right-
hand-side, RHS, for each rule that is instantiated, as well as indices from
the sentence String array, an (i j) pair. Because these components all
need to be represented, the easiest way to create the problem solving state,
is to make a State class. Since the State class supports the full Earley
algorithm, it will require get methods for returning the LHS, the RHS,
and the i j indices. Also, as seen in the pseudo-code of Section 9.2, we
need the ability to get the term after the dot in the RHS, as well as the
ability to determine whether or not the dot is in the last (terminal) position.
Methods to support these requirements must be provided.

Throughout our discussion, LHS and RHS have been mentioned, but not
their implementation. Since the Earley parser uses context-free grammar
rules, we create the LHS as a String. The RHS on the other hand, is a
sequence of terms, which may or may not include a dot. Due to the fact
that it is used in two separate classes, and the additional requirement of dot
manipulation, we separated the RHS into its own class.

408 Part IV: Programming in Java

30.3 The Earley Parser: Java Code

 The Earley parser, which manipulates the components described in Section
30.2, will have its own class. This makes it easier to contain and hide the
details of the algorithm. The EarleyParser class can be implemented
in either of two ways.

First, the class could be static. When one wanted to parse a sentence, the
static method would be called, and with the grammar rules and the
sentence to be parsed as arguments, return a boolean indicating whether
the parse was successful. Alternatively, the chart itself could be returned
and examined to determine whether there was a successful parse. Second,
with the class not static, the EarleyParser would be instantiated with
a Grammar, and then a parse method could be called with a sentence.
After the parse method is called, another method would be called to obtain
the charts (if the parse method returns a boolean). We take this second
approach and start with the most basic class, the RHS class, and then work
our way towards creating the EarleyParser class.

The RHS Class The RHS is a String array containing a boolean that records whether
its terms contains a dot, an int recording the offset of the dot (this will
default to –1, indicating no dot), and a final static String
containing the representation of the dot. The constructor determines if
there is a dot and updates hasDot and dot accordingly.

public class RHS

{

 private String[] terms;

 private boolean hasDot = false;

 private int dot = -1;

 private final static String DOT = "@";

 public RHS (String[] t)

 {

 terms = t;

 for (int i=0; i< terms.length; i++)

 {

 if(terms[i].compareTo (DOT) == 0)

 {

 dot = i;

 hasDot = true;

 break;

 }

 }

 }

 // Additional methods defined below.

}

 Chapter 30 The Earley Parser: Dynamic Programming in Java 409

RHS returns its terms, the String array, for use by the
EarleyParser, as well as the String prior to and after the dot. This
enables ease of queries by the EarleyParser regarding the terms in the
RHS of the grammar rule. For example,. EarleyParser gets the term
following the dot from RHS, and queries the Grammar to determine if
that term is a part of speech.

public String[] getTerms ()

{

 return terms;

}

public String getPriorToDot ()

{

 if(hasDot && dot >0)

 return terms[dot-1];

 return "";

}

public String getAfterDot ()

{

 if(hasDot && dot < terms.length-1)

 return terms[dot+1];

 return "";

}

The final procedures required to implement RHS are manipulation of and
queries concerning the dot. The queries determine whether there is a dot,
and where the dot is located, last or first. When a dot is moved or added to
a RHS, a new RHS is returned. This is done because whenever a dot is
moved a new State must be created for it.

public boolean hasDot ()

{

 return hasDot;

}

public boolean isDotLast ()

{

 if(hasDot)

 return (dot==terms.length-1);

 return false;

}

public boolean isDotFirst ()

{

 if(hasDot)

 return (dot==0);

 return false;

}

410 Part IV: Programming in Java

public RHS addDot ()

{

 String[] t = new String[terms.length+1];

 t[0] = DOT;

 for (int i=1; i< t.length; i++)

 t[i] = terms[i-1];

 return new RHS (t);

}

public RHS addDotLast ()

{

 String[] t = new String[terms.length+1];

 for (int i=0; i< t.length-1; i++)

 t[i] = terms[i];

 t[t.length-1] = DOT;

 return new RHS (t);

}

public RHS moveDot ()

{

 String[] t = new String[terms.length];

 for (int i=0; i< t.length; i++)

 {

 if (terms[i].compareTo (DOT)==0)

 {

 t[i] = terms[i+1];

 t[i+1] = DOT;

 i++;

 }

 else

 t[i] = terms[i];

 }

 return new RHS (t);

}

There are two additional methods that we have not included here. These
are overrides methods of equals(Object o), and toString().
Equivalence indicates identical terms, and placement of the dot.
toString() is overridden to make it easier to print during debug, and
when the charts are printed. Next we present one of the two classes that
contain a RHS.

The Grammar
Class

The Grammar class does not instantiate the rules of a specific grammar. It
contains a HashMap that links the left-hand-side (LHS) of a grammar rule,
which is a String, to an array of RHSs, and a Vector of Strings that
are the parts of speech of the grammar.

 Chapter 30 The Earley Parser: Dynamic Programming in Java 411

public class Grammar

{

 HashMap<String, RHS[]> Rules;

 Vector<String> POS;

 public Grammar ()

 {

 Rules = new HashMap<String, RHS[]>();

 POS = new Vector<String>();

 }

 // Additional methods defined below.

}

The Grammar class supports two methods: one returning all the RHSs
associated with a LHS, and the second returning if a String is a part of
speech.

public RHS[] getRHS (String lhs)

{

 RHS[] rhs = null;

 if(Rules.containsKey (lhs))

 {

 rhs = Rules.get (lhs);

 }

 return rhs;

}

public boolean isPartOfSpeech (String s)

{

 return POS.contains (s);

}

For EarleyParser to function, the Grammar class must be extended.
To do this we have created SimpleGrammar that demonstrates both
creation of the rules and how these are added to the rule list.

public class SimpleGrammar extends Grammar

{

 public SimpleGrammar ()

 {

 super();

 initialize();

 }

 private void initialize()

 {

 initRules();

 initPOS();

 }

412 Part IV: Programming in Java

 private void initRules()

 {

 String[] s1 = {"NP", "VP"};

 RHS[] sRHS = {new RHS(s1)};

 Rules.put ("S", sRHS);

 String[] np1 = {"NP","PP"};

 String[] np2 = {"Noun"};

 RHS[] npRHS = {new RHS(np1),

 new RHS(np2)};

 Rules.put ("NP", npRHS);

 String[] vp1 = {"Verb","NP"};

 String[] vp2 = {"VP", "PP"};

 RHS[] vpRHS = {new RHS(vp1),

 new RHS(vp2)};

 Rules.put ("VP", vpRHS);

 String[] pp1 = {"Prep","NP"};

 RHS[] ppRHS = {new RHS(pp1)};

 Rules.put ("PP", ppRHS);

 String[] noun1 = {"John"};

 String[] noun2 = {"Mary"};

 String[] noun3 = {"Denver"};

 RHS[] nounRHS = {new RHS(noun1),

 new RHS(noun2),

 new RHS(noun3)};

 Rules.put ("Noun", nounRHS);

 String[] verb = {"called"};

 RHS[] verbRHS = {new RHS(verb)};

 Rules.put ("Verb", verbRHS);

 String[] prep = {"from"};

 RHS[] prepRHS = {new RHS(prep)};

 Rules.put ("Prep", prepRHS);

 }

 private void initPOS()

 {

 POS.add ("Noun");

 POS.add ("Verb");

 POS.add ("Prep");

 }

}
The State class The State class contains a String representing the LHS of the rule, a

RHS that contains the dotted right-hand-side of the rule, and ints
describing Seen/UnSeen components. There are get methods, and
functions for handling the dot.

 Chapter 30 The Earley Parser: Dynamic Programming in Java 413

public class State

{

 private String lhs;

 private RHS rhs;

 private int i,j;

 public State (String lhs, RHS rhs, int i, int j)

 {

 this.lhs = lhs;

 this.rhs = rhs;

 this.i = i;

 this.j = j;

 }

 public String getLHS ()

 {

 return lhs;

 }

 public RHS getRHS ()

 {

 return rhs;

 }

 public int getI ()

 {

 return i;

 }

 public int getJ ()

 {

 return j;

 }

 public String getPriorToDot ()

 {

 return rhs.getPriorToDot ();

 }

 public String getAfterDot ()

 {

 return rhs.getAfterDot ();

 }

 public boolean isDotLast ()

 {

 return rhs.isDotLast ();

 }

}

414 Part IV: Programming in Java

Finally, again, the function overrides of equals(Object o) and
toString()are not included. Equivalent states are identified when the
LHS, RHS, i, and j are all identical. toString()prints out the State
in a readable format.

The Chart Class The Chart class contains a Vector of States. These are the states
produced by the EarleyParser. The States are inserted into the
Vector in order; this is necessary for the algorithm.

public class Chart

{

 Vector<State> chart;

 public Chart ()

 {

 chart = new Vector<State>();

 }

 public void addState (State s)

 {

 if(!chart.contains (s))

 {

 chart.add (s);

 }

 }

 public State getState (int i)

 {

 if(i < 0 || i >= chart.size ())

 return null;

 return (State)chart.get (i);

 }

}

addState(State s) determines whether s is already within the
Chart. If s is not in the Chart, s is added to the end of Vector.
Nothing is done when s is already in the Chart. getState(int i)
returns the State at the i-th offset in Vector. There are checks to
enforce that i is a valid offset. toString()is overridden in Chart, in
addition to a get function that returns the size of the Chart.

30.4 The Completed Parser

 We have now completed the design of the components of the Earley
parser. Figure 30.1 presents the object hierarchy that supports this design.
EarleyParser, which implements this design is presented in Section
30.4.1, while Section 30.4.2 describes main which presents two sentences
and produces their chart parses.

 Chapter 30 The Earley Parser: Dynamic Programming in Java 415

 Figure 30.1 The design hierarchy for the EarleyParser class.

The
EarleyParser

Class

The EarleyParser class contains Grammar describing the grammar
rules for parsing the perspective sentence. It also creates String, an array
containing the sentence to be parsed, and Chart, an array containing the
evolving states of the chart. sentence and Chart will change with each
call of parseSentence(…). Note that each of the methods of the
EarleyParser class reflect the design components of Sections 30.2 and 30.3
and presented in Figure 30.1.

public class EarleyParser

{

 private Grammar grammar;

 private String[] sentence;

 private Chart[] charts;

 public EarleyParser (Grammar g)

 {

 grammar = g;

 }

 public Grammar getGrammar ()

 {

 return grammar;

 }

 public Chart[] getCharts ()

 {

 return charts;

 }

 // Additional methods defined below.

}

parseSentence(…) takes the sentence to be parsed, uses it to
initialize Chart to have the number of words in the sentence + 1 number
of chart states, and makes the dummy start state (“$ → @ S”, 0,
0) the first chart state. parseSentence then iterates through each of

416 Part IV: Programming in Java

the charts, and for every State in a Chart, checks to determine which
procedure is called next: completer(...) - the dot is last,
scanner(...) - the term following the dot is a part of speech, or
predictor(...) - the term following the dot is not a part of speech.
After all charts are visited, if the last State added to the last Chart is a
finish state, (”$ → S @”, 0, sentenceLength), the sentence
was successfully parsed.

public boolean parseSentence (String[] s)

{

 sentence = s;

 charts = new Chart[sentence.length+1];

 for (int i=0; i< charts.length; i++)

 charts[i] = new Chart ();

 String[] start1 = {"@", "S"};

 RHS startRHS = new RHS (start1);

 State start = new State ("$",startRHS,0,0,null);

 charts[0].addState (start);

 for (int i=0; i<charts.length; i++)

 {

 for (int j=0; j<charts[i].size (); j++)

 {

 State st = charts[i].getState (j);

 String next_term = st.getAfterDot ();

 if (st.isDotLast ())

 // State's RHS = ... @

 completer (st);

 else

 if(grammar.isPartOfSpeech (next_term))

 // RHS = ... @ A ..., where A is a part of speech.

 scanner (st);

 else

 predictor (st); // A is NOT a part of speech.

 }

 }

 // Determine whether a successful parse.

 String[] fin = {"S","@"};

 RHS finRHS = new RHS (fin);

 State finish = new State ("$",finRHS,

 0,sentence.length,null);

 State last = charts[sentence.length].getState

 (charts[sentence.length].size ()-1);

 return finish.equals (last);

}

 Chapter 30 The Earley Parser: Dynamic Programming in Java 417

We next create the predictor, scanner, and completer
procedures. First, the predictor(State s) adds all rules for the
term after the dot in s to the j-th slot in chart.

private void predictor (State s)

{

 String lhs = s.getAfterDot ();

 RHS[] rhs = grammar.getRHS (lhs);

 int j = s.getJ ();

 for (int i=0; i< rhs.length; i++)

 {

 State ns = new State (lhs, rhs[i].addDot (),
 j, j, s);

 charts[j].addState (ns);

 }

}

scanner(State s) determines whether the part of speech term
following the dot in s has a RHS that contains only the j-th word in the
sentence. If so, this new state is added to the (j+1)-th chart.

private void scanner (State s)

{

 String lhs = s.getAfterDot ();

 RHS[] rhs = grammar.getRHS (lhs);

 int i = s.getI ();

 int j = s.getJ ();

 for (int a=0; a< rhs.length; a++)

 {

 String[] terms = rhs[a].getTerms ();

 if (terms.length == 1 &&

 j < sentence.length &&

 terms[0].compareToIgnoreCase

 (sentence[j]) == 0)

 {

 State ns = new State (lhs,

 rhs[a].addDotLast (), j, j+1, s);

 charts[j+1].addState (ns);

 }

 }

}

Finally, completer(State s) determines whether any state in the
i-th chart slot has a term following the dot that is the same as the LHS of
s. If so, new States based on those terms found are created with a
moved dot, and an updated j.

418 Part IV: Programming in Java

private void completer (State s)

{

 String lhs = s.getLHS ();

 for (int a=0; a<charts[s.getI ()].size (); a++)

 {

 State st = charts[s.getI ()].getState (a);

 String after = st.getAfterDot ();

 if(after != null &&

 lhs.compareTo (after)==0)

 {

 State ns = new State (st.getLHS (),

 st.getRHS ().moveDot (),

 st.getI (), s.getJ (), s);

 charts[s.getJ ()].addState (ns);

 }

 }

 }

After EarleyParser completes parseSentence(…), the
getCharts() method is called. These charts in conjunction with the
grammar rules can be used to determine the parse trees of the sentence.
We discuss methods for doing this in Section 30.5.

The
EarleyParser:

A Test Run

We next create methods that contain sentences that test
EarleyParser. In our example, the included Main, contains two
sentences and then uses SimpleGrammar to parse them. It then prints
out the sentences and the associated Charts for each.

public class Main

{

 public static void main (String[] args)

 {

 String[] sentence1 =

 {"John", "called", "Mary"};

 String[] sentence2 =

 {"John", "called", "Mary",

 "from", "Denver"};

 Grammar grammar = new SimpleGrammar ();

 EarleyParser parser =

 new EarleyParser (grammar);

 test (sentence1,parser);

 test (sentence2,parser);

 }

 Chapter 30 The Earley Parser: Dynamic Programming in Java 419

 static void test (String[] sent,

 EarleyParser parser)

 {

 StringBuffer out = new StringBuffer ();

 for (int i=0; i<sent.length-1;i++)

 out.append (sent[i]+" ");

 out.append (sent[sent.length-1]+".");

 String sentence = out.toString ();

 System.out.println (

 "\nSentence: \""+sentence+"\"");

 boolean successful =

 parser.parseSentence (sent);

 System.out.println (

 "Parse Successful:" + successful);

 Chart[] charts = parser.getCharts ();

 System.out.println ("");

 System.out.println (

 "Charts produced by the sentence
 \""+sentence+"\"");

 for (int i=0; i<charts.length; i++)

 {

 System.out.println ("Chart "+ i + ":");

 System.out.println (charts[i]);

 }

 }

}

 30.5 Generating Parse Trees from Charts and Grammar Rules
(Advanced Section)

 All the topics discussed, as well as all the data structures and algorithms we
have designed to this point in Chapter 30, have been used to build a chart
that indicates whether or not a set of grammar rules are sufficient for
parsing a string of words. In this final section we present some ideas for
extracting parse trees from the charts created and the grammar rules that
supported them. Thus, we have completed the forward component of the
forward/backward algorithm (Luger 2009, Section 4.1 and Section 15.2.2)
used in dynamic programming. We now present some ideas for completing
the backward component of the dynamic programming algorithm: how we
can use the chart and set of grammar rules to extract parse trees. We
consider this an advanced topic, and so will present only the main
components of an algorithm and leave its design as an exercise. Included
with the software is our implementation of the stack-based approach to
this problem.

To begin, we must determine how each state in the chart is created. One
method for accomplishing this is to list all the ways that each state of the

420 Part IV: Programming in Java

chart can be produced. Another approach is to record this information
when each of the states of the chart is first produced. We will discuss and
implement this second method. To record the sources of a State we can
add to the State class a Vector of States. This Vector will
contain all States that produced this State. To maintain this, when a
State is added to a Chart, if the State is already within the Chart,
merge the sources of the State within the Chart and the one we
attempted to add. This approach offers a method to look back through the
charts quickly to find the possible parse trees.

It is important to remember that more then one parse tree can often be
produced from Chart. An example is that the sentence “John called Mary
from Denver” has two interpretations (parses): John called Mary, who is
from Denver; and John called Mary, and John is in Denver. So however we
produce the parse trees, we need to decide if we will attempt to produce all
trees, or select only one. With appropriate forethought, it is easy to
produce all parse trees.

To generate parse trees, the backward component of the dynamic
programming algorithm, we begin with the final state (“$ → S @”,
0, sentenceLength+1). For each source state for that final state,
we iterate through the following:

1. If the source state is the start state (“$ → @ S”, 0, 0),
return the tree created. Otherwise continue.

2. Look at the current state we are evaluating. If the dot is last,
then add LHS to the tree as the left-most child of the current
evaluating node. We add it as the left-most child because we are
building the tree right to left. This means that we will find the
state with the last word of the sentence before any other
preceding words. We will find the right-most child first, and
want the subsequent children to be added to the left.

3. If the state’s LHS is a part of speech, POS, then add the RHS’s
first term as the only child of the node we just added. We are
guaranteed that the LHS was just added as a child, because for
this type of state there is a single term in the RHS and a final
dot. For example: “Noun → John @”. We have finished
evaluating this state, so move to its source state and continue
evaluation. There are two cases for this:

a. There is only one source. Easy! Use that one source.

b. There are multiple sources. Now we need to find the
one that matches how we have been building the tree.
To demonstrate what we mean, consider the more
complex sentence “Old men and women like dogs.”
The ambiguity for this sentence is: only the men are
old, or if both the men and women are old. “and” is a
conjunction, which is a part of speech so it would
match this rule. Here is the problem:

We have just finished with the state: (“Conj → and @”, 2, 3).
The sources of this state are both (“NP → NP @ Conj NP”, 0,

 Chapter 30 The Earley Parser: Dynamic Programming in Java 421

2) and (”NP → NP @ Conj NP”, 1, 2). Which one should we
use? First, notice that the only difference between the two source states, is
the location of i. (The i describes where the start of each rule is.) In
(“NP → NP @ Conj NP”, 0, 2), the start is at the beginning of
the sentence. For (“NP → NP @ Conj NP”, 1, 2), the start is
“men”. Thus the parse difference between “old (men) and women” and
“old (men and women)”.

We need to look at where the previous states we have used to make the
parse tree are looking. If for this particular tree, we had used (“NP →
NP Conj @ NP”, 0, 3) then we need to use (“NP → NP @
Conj NP”, 0, 2). For (“NP → NP Conj @ NP”, 1, 3) we
would use (“NP → NP @ Conj NP”, 1, 2). Therefore we must
find the source state that matches the rule ignoring the position of the dot
(this should be off by one), and the i.

4. At this point the current state may have been added to the tree,
or it may not have. In either case we need to determine whether
there are multiple sources for this state, and if there are, we
need to iterate across each of them to determine which of the
sources are valid. Before we do this, we need to update the
current evaluating node. Above, we mentioned a current
evaluating node. This is the node we are adding children to.
Before we can continue, we need to determine if this node
needs to change for the next iteration. There are three cases:

a. The current state’s dot is first. This means there are no
more children that need to be added to this node. So
we move to the parent of the current evaluating node.

b. If the current state’s LHS was just added to the tree and
it was not a part of speech, then we will want to be
adding the next nodes to the node we just added. So
the current evaluating node moves to its left-most
child.

c. Otherwise, continue to use this node. This happens if
we have just added a part of speech, POS, node and its
child.

5. Next, we must iterate through all of these sources, and for each
source state that meets the criteria, we attempt to continue
building the tree from that state. One of the following must be
true for this continuation to be accomplished:

a. The source state’s LHS is equal to the current state’s
term prior to the dot. Remember, we are moving from
right to left, and the dot is moving from right to left. So
if this is true, then the current state was generated
because the source state completed a rule (the dot
moved all the way to the right) and the
completer(…) method was called.

b. The source state’s RHS, with dot moved to the right,
and LHS matches on a state we have already evaluated.

422 Part IV: Programming in Java

6. If the criteria fail for all source states, then this was a dead end,
and no tree is returned. If any of the source states are valid,
start at step 1 with that state as the current state, and update the
current evaluating node. The accepted trees (their may be no
possible tree) are bundled together and returned.

From this algorithm, we can produce the multiple parse trees implicit in the
Earley algorithm’s successful production of the Chart. Example code
implementing this algorithm is included with the Chapter 30 support
materials.

The Earley parser code as well as the first draft of this chapter was written
by Ms Breanna Ammons, MS in Computer Science, University of New
Mexico.

 Exercises

 1. Describe the role of the dot within the right hand side of the grammar
rules processed by the Earley parser. How is the location of the dot
changed as the parse proceeds? What does it mean that the same right
hand side of a grammar rule can have dots at different locations?

2. In the Earley parser the input word list and the states in the state lists
have indices that are related. Explain how the indices for the states of the
state list are created.

3. Describe in your own words the roles of the predictor,
completer, and scanner procedures in the algorithm for Earley
parsing. What order are these procedures called in when parsing a sentence,
and why is that ordering important? Explain your answers to the order of
procedure invocation in detail.

4. Use the Java parser to consider the sentence “John saw the burglar with
the telescope”. Parse also “Old men and women like dogs”. Comment on
the different parses possible from these sentences and how you might
retrieve them from the chart.

5. Create a Sentence class. Have one of the constructors take a
String, and have it then separate the String into words.

6. Code the algorithm for production of parse trees from the completed
Chart. One method of recording the sources is presented in Section 30.5.
You may find it useful to use a stack to keep track of the states you have
evaluated for the parse tree.

7. Extend EarleyParser to include support for context-sensitive
(Luger 2009, Section 15.9.5) grammar rules. What new structures are
necessary to guarantee constraints across subtrees of the parse?

